首页> 外文OA文献 >Explicit coding in the brain: data-driven semantic analysis of human fMRI BOLD responses with Formal Concept Analysis
【2h】

Explicit coding in the brain: data-driven semantic analysis of human fMRI BOLD responses with Formal Concept Analysis

机译:大脑中的显式编码:使用形式概念分析对人类fmRI BOLD响应进行数据驱动的语义分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Understanding how semantic information is represented in the brain has been an important research focus of neuroscience in the past few years. We showed previously (Endres et al 2010) that Formal Concept Analysis (FCA, (Ganter and Wille 1999)) can reveal interpretable semantic information (e.g. specialization hierarchies, or feature-based representation) from electrophysiological data. Unlike other analysis methods (e.g. hierarchical clustering), FCA does not impose inappropriate structure on the data. FCA is a mathematical formalism compatible with the explicit coding hypothesis (Foldiak, 2009) Here, we investigate whether similar findings can be obtained from fMRI BOLD responses recorded from human subjects. While the BOLD response provides only an indirect measure of neural activity on a much coarser spatio-temporal scale than electrophysiological recordings, it has the advantage that it can be recorded from humans, which can be questioned about their perceptions during the experiment, thereby obviating the need of interpreting animal behavioural responses. Furthermore, the BOLD signal can be recorded from the whole brain simultaneously. In our experiment, a single human subject was scanned while viewing 72 grayscale pictures of animate and inanimate objects in a target detection task (Siemens Trio 3T scanner, GE-EPI, TE=40ms, 38 axial slices, TR=3.08s, 48 sessions, amounting to a total of 10,176 volume images). These pictures comprise the formal objects for FCA. We computed formal attributes by learning a hierarchical Bayesian classifier, which maps BOLD responses onto binary features, and these features onto object labels. The connectivity matrix between the binary features and the object labels can then serve as the formal context. In line with previous reports, FCA revealed a clear dissociation between animate and inanimate objects in a high-level visual area (inferior temporal cortex, IT), with the inanimate category including plants. The inanimate category was subdivided into plants and non-plants when we increased the number of attributes extracted from the fMRI responses. FCA also highlighted organizational differences between the IT and the primary visual cortex, V1. We show that subjective familiarity and similarity ratings are strongly correlated with the attribute structure computed from the fMRI signal.
机译:在过去的几年中,了解语义信息在大脑中的表示方式一直是神经科学的重要研究重点。先前我们(Endres等人2010)证明形式概念分析(FCA,(Ganter and Wille 1999))可以从电生理数据中揭示可解释的语义信息(例如专业化等级或基于特征的表示)。与其他分析方法(例如分层聚类)不同,FCA不会在数据上施加不适当的结构。 FCA是与显式编码假设兼容的数学形式主义(Foldiak,2009年)。在这里,我们调查是否可以从人类受试者记录的fMRI BOLD反应中获得相似的发现。尽管BOLD响应仅在比电生理记录更粗糙的时空尺度上提供了神经活动的间接度量,但它的优点是可以从人那里记录下来,可以在实验过程中对他们的看法提出质疑,从而避免了需要解释动物的行为反应。此外,可以同时从整个大脑记录BOLD信号。在我们的实验中,在目标检测任务(Siemens Trio 3T扫描仪,GE-EPI,TE = 40ms,38轴向切片,TR = 3.08s,48个疗程)中,在查看72张有生命和无生命物体的灰度图片时扫描了一个人类受试者,总计10176张体积图像)。这些图片构成了FCA的正式对象。我们通过学习分层贝叶斯分类器来计算形式属性,该分类器将BOLD响应映射到二进制特征,并将这些特征映射到对象标签。二进制特征和对象标签之间的连接矩阵然后可以用作形式上下文。与以前的报告一致,FCA揭示了高视觉区域(下颞叶皮层,IT)中有生命和无生命物体之间的明显分离,无生命类别包括植物。当我们增加从功能磁共振成像反应中提取的属性数量时,无生命类别被分为植物和非植物。 FCA还强调了IT与主要视觉皮层V1之间的组织差异。我们表明,主观的熟悉度和相似性评级与从fMRI信号计算出的属性结构密切相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号